

JBF-003-1101003

Seat No.

M. Sc. (Sem. I) (CBCS) Examination December - 2019

Physical Chemistry: C-103
(New Course)

Faculty Code: 003 Subject Code: 1101003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) Each question carries 14 marks.
- 1 Answer the following: (any seven)
 - (a) Define: Partition function, state the factors on which it depends.
 - (b) Discuss Zinc-sliver accumulator.
 - (c) Discuss quantitative applications D-H theory.
 - (d) Fill in the blanks:
 - (i) When temperature increases solubility of gas _____.
 - (ii) For solution exhibiting positive deviation from ideal behaviour sign of β will be _____.
 - (iii) Real gas behave ideally when pressure is _____.
 - (iv) Ideal solution follows _____ law.
 - (e) Explain approximate method.
 - (f) What are the assumption made in deviation of depression in freezing point of dilute solution.
 - (g) Explain D-H evaluation for concentrated solution.
 - (h) Show that $E = \frac{3}{2}RT$ for monoatomic gas and RT for

diatomic gas.

- (i) Define: Ionic strength, chemical cell, Debye length, Fugacity.
- (j) Discuss paretically miscible liquid.

- 2 Answer the following: (any two)
 - (a) Explain equation of state method for the determination of fugacity.
 - (b) Discuss the relationship between.
 - (i) Partition function and work function
 - (ii) Partition function and Heat content.
 - (c) Derive an expression for the determination of elevation of the boiling point of dilute solution.
- **3** Answer the following:
 - (a) Discuss electrode concentration cell in detail.
 - (b) Discuss the determination of equilibrium constant by D-H equation.

OR

(a) Derive the following equation

$$P = \frac{P_1^{\square} P_2^{\square}}{P_1^{\square} - Ni \left(P_1^{\square} - P_2^{\square} \right)}$$

(b) Discuss Bose-Einstein statistics. Calculate the rotational partition function of hydrogen gas at 300°K

(For :
$$H_2~I$$
 = 0.459 $\times~10^{-40}~gcm^2$ and $\sigma\,{=}\,2)$

- 4 Answer the following:
 - (a) Discuss:
 - (i) Duhom margules equation
 - (ii) Solubility of gases.
 - (b) Explain Lewis-Randall rule following data are given below for oxygen gas at 0°C

$\mathrm{P}_{\mathrm{atm}}$	50	100	200	400
\mathbf{F}_{atm}	48	92.5	175	338

Calculate the change in free energy in compressing 1 mole of ${\rm O_2}$ at 0°C from 50 to 200 mole of ${\rm O_2}$ at 0°C and non ideal condition.

- 5 Answer the following: (any two)
 - (a) What is LJP? Derive and Expression for the determination of LJP.
 - (b) Discuss the Sakur Tetrode equation.
 - (c) Discuss variation of fagacity with temperature for a mixture of gases.
 - (d) Discuss the determination of mean ionic activity coefficient by D-H theory.